108 research outputs found

    Cortical Mirror-System Activation During Real-Life Game Playing: An Intracranial Electroencephalography (EEG) Study

    Full text link
    Analogous to the mirror neuron system repeatedly described in monkeys as a possible substrate for imitation learning and/or action understanding, a neuronal execution/observation matching system (OEMS) is assumed in humans, but little is known to what extent this system is activated in non-experimental, real-life conditions. In the present case study, we investigated brain activity of this system during natural, non-experimental motor behavior as it occurred during playing of the board game "Malefiz". We compared spectral modulations of the high-gamma band related to ipsilateral reaching movement execution and observation of the same kind of movement using electrocorticography (ECoG) in one participant. Spatially coincident activity during both conditions execution and observation was recorded at electrode contacts over the premotor/primary motor cortex. The topography and amplitude of the high-gamma modulations related to both, movement observation and execution were clearly spatially correlated over several fronto-parietal brain areas. Thus, our findings indicate that a network of cortical areas contributes to the human OEMS, beyond primary/premotor cortex including Brocas area and the temporo-parieto-occipital junction area, in real-life conditions.Comment: 4 pages, 2 figure, CCN 2018 conference pape

    A Framework for Preserving Privacy and Cybersecurity in Brain-Computer Interfacing Applications

    Full text link
    Brain-Computer Interfaces (BCIs) comprise a rapidly evolving field of technology with the potential of far-reaching impact in domains ranging from medical over industrial to artistic, gaming, and military. Today, these emerging BCI applications are typically still at early technology readiness levels, but because BCIs create novel, technical communication channels for the human brain, they have raised privacy and security concerns. To mitigate such risks, a large body of countermeasures has been proposed in the literature, but a general framework is lacking which would describe how privacy and security of BCI applications can be protected by design, i.e., already as an integral part of the early BCI design process, in a systematic manner, and allowing suitable depth of analysis for different contexts such as commercial BCI product development vs. academic research and lab prototypes. Here we propose the adoption of recent systems-engineering methodologies for privacy threat modeling, risk assessment, and privacy engineering to the BCI field. These methodologies address privacy and security concerns in a more systematic and holistic way than previous approaches, and provide reusable patterns on how to move from principles to actions. We apply these methodologies to BCI and data flows and derive a generic, extensible, and actionable framework for brain-privacy-preserving cybersecurity in BCI applications. This framework is designed for flexible application to the wide range of current and future BCI applications. We also propose a range of novel privacy-by-design features for BCIs, with an emphasis on features promoting BCI transparency as a prerequisite for informational self-determination of BCI users, as well as design features for ensuring BCI user autonomy. We anticipate that our framework will contribute to the development of privacy-respecting, trustworthy BCI technologies

    A large-scale evaluation framework for EEG deep learning architectures

    Full text link
    EEG is the most common signal source for noninvasive BCI applications. For such applications, the EEG signal needs to be decoded and translated into appropriate actions. A recently emerging EEG decoding approach is deep learning with Convolutional or Recurrent Neural Networks (CNNs, RNNs) with many different architectures already published. Here we present a novel framework for the large-scale evaluation of different deep-learning architectures on different EEG datasets. This framework comprises (i) a collection of EEG datasets currently including 100 examples (recording sessions) from six different classification problems, (ii) a collection of different EEG decoding algorithms, and (iii) a wrapper linking the decoders to the data as well as handling structured documentation of all settings and (hyper-) parameters and statistics, designed to ensure transparency and reproducibility. As an applications example we used our framework by comparing three publicly available CNN architectures: the Braindecode Deep4 ConvNet, Braindecode Shallow ConvNet, and two versions of EEGNet. We also show how our framework can be used to study similarities and differences in the performance of different decoding methods across tasks. We argue that the deep learning EEG framework as described here could help to tap the full potential of deep learning for BCI applications.Comment: 7 pages, 3 figures, final version accepted for presentation at IEEE SMC 2018 conferenc
    • …
    corecore